Strongly polynomial sequences as interpretations

نویسندگان

  • Andrew J. Goodall
  • Jaroslav Nesetril
  • Patrice Ossona de Mendez
چکیده

A strongly polynomial sequence of graphs (Gn) is a sequence (Gn)n∈N of finite graphs such that, for every graph F , the number of homomorphisms from F to Gn is a fixed polynomial function of n (depending on F ). For example, (Kn) is strongly polynomial since the number of homomorphisms from F to Kn is the chromatic polynomial of F evaluated at n. In earlier work of de la Harpe and Jaeger, and more recently of Averbouch, Garijo, Godlin, Goodall, Makowsky, Nešetřil, Tittmann, Zilber and others, various examples of strongly polynomial sequences and constructions for families of such sequences have been found. We give a new model-theoretic method of constructing strongly polynomial sequences of graphs that uses interpretation schemes of graphs in more general relational structures. This surprisingly easy yet general method encompasses all previous constructions and produces many more. We conjecture that, under mild assumptions, all strongly polynomial sequences of graphs can be produced by the general method of quantifier-free interpretation of graphs in certain basic relational structures (essentially disjoint unions of transitive tournaments with added unary relations). We verify this conjecture for strongly polynomial sequences of graphs with uniformly bounded degree. Supported by grant ERCCZ LL-1201 of the Czech Ministry of Education Supported by grant ERCCZ LL-1201 of the Czech Ministry of Education, CE-ITI P202/12/G061 of GAČR, and LIA STRUCO Supported by grant ERCCZ LL-1201 of the Czech Ministry of Education and LIA STRUCO, and partially supported by ANR project Stint under reference ANR-13-BS02-0007

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming Dependency Chains of Constrained TRSs into Bounded Monotone Sequences of Integers

In the dependency pair framework for proving termination of rewriting systems, polynomial interpretations are used to transform dependency chains into bounded decreasing sequences of integers, and they play an important role for the success of proving termination, especially for constrained rewriting systems. In this paper, we show sufficient conditions of linear polynomial interpretations for ...

متن کامل

On strongly J-clean rings associated with polynomial identity g(x) = 0

In this paper, we introduce the new notion of strongly J-clean rings associated with polynomial identity g(x) = 0, as a generalization of strongly J-clean rings. We denote strongly J-clean rings associated with polynomial identity g(x) = 0 by strongly g(x)-J-clean rings. Next, we investigate some properties of strongly g(x)-J-clean.

متن کامل

On annihilator ideals in skew polynomial rings

This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...

متن کامل

Iterative scheme based on boundary point method for common fixed‎ ‎point of strongly nonexpansive sequences

Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$. Let ${S_n}$ and ${T_n}$ be sequences of nonexpansive self-mappings of $C$, where one of them is a strongly nonexpansive sequence. K. Aoyama and Y. Kimura introduced the iteration process $x_{n+1}=beta_nx_n+(1-beta_n)S_n(alpha_nu+(1-alpha_n)T_nx_n)$ for finding the common fixed point of ${S_n}$ and ${T_n}$, where $uin C$ is ...

متن کامل

Polynomial Generalizations of the Pell sequence and the Fibonacci sequence

We provide three new polynomial generalizations for the Pell sequence an, also, new formulas for this sequence. An interesting relation, in terms of partitions, between the Pell and the Fibonacci sequences is given, Finally two combinatorial interpretations for the Fibonacci numbers are given by making use of the Rogers-Ramanujan identities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Logic

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016